

SHORT REPORTS

γ -GLUTAMYLPEPTIDES FROM *RHYNCHOSIA ALBIFLORA*

BERNARD WATHELET, MICHEL MARLIER,* GASTON DARDENNE and JEAN CASIMIR

Laboratoires de Chimie organique et biologique; *Chimie générale et organique, Faculté des Sciences Agronomiques de l'Etat, 5800, Gembloux, Belgium

(Received 2 July 1987)

Key Word Index—*Rhynchosia albiflora*; Phaseolinae; γ -glutamylpeptides; unsaturated amino acid; ester of amino acid.

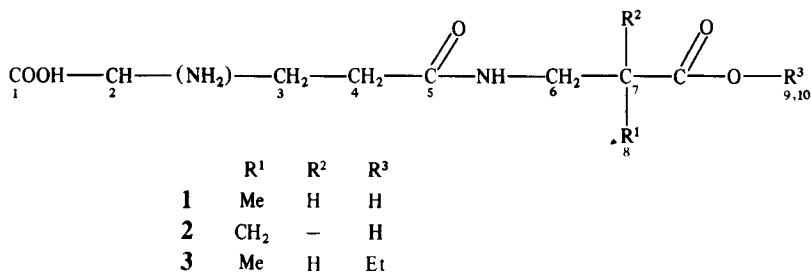
Abstract—Two new γ -glutamylpeptides (γ -L-glutamyl- α -methylene- β -aminopropionic acid, γ -L-glutamyl-ethyl- β -aminoisobutyrate) together with γ -L-glutamyl- β -aminoisobutyric acid have been isolated from seeds of *Rhynchosia albiflora*. The structures were determined by chemical and physical methods.

INTRODUCTION

In the course of our investigations of the free-amino acids and peptides in higher plants and fungi, we have identified in the seeds of *Rhynchosia albiflora* Lour. several glutamylpeptides. γ -L-Glutamyl- β -aminoisobutyric acid (1), previously isolated from *Iris tingitana* [1] and *Lunaria annua* [2, 3], is present in large amounts together with two new γ -glutamylpeptides: γ -L-glutamyl- α -methylene- β -aminopropionic acid (2) and γ -L-glutamyl-ethyl- β -aminoisobutyrate (3). This is the first report of a natural γ -glutamylamino acid ester.

RESULTS AND DISCUSSION

2D-PC surveys revealed that seeds of *R. albiflora* contained six or seven unusual or new amino acids or peptides. Compounds 1-3 gave a purple colouration with ninhydrin. 1 and 2 were slow moving and 3 was fast moving. On high voltage electrophoresis at pH 3.6, 1 and 2 were less acidic than aspartic acid. 2 was more acidic than 1 and 3 was a neutral compound.


Seeds (50 g) were extracted with 75% ethanol-water, the extract treated with Amberlite CG 120, H^+ form and the amino acids eluted with 2 M NH_4OH . The eluate was concentrated, dissolved in water and applied to a column of Dowex 1 \times 8, acetate form, washed with water. Elution with water gave neutral and basic amino acids. Acidic compounds were separated with 0.125-2 M HOAc. 1 was eluted before glutamic acid with some impurities but it was pure after several crystallizations (320 mg). 2 was eluted pure after glutamic acid (20 mg). 3 was separated from basic and neutral amino acids on a column of Amberlite CG 120, H^+ form, elution with 1 M pyridine and then preparative PC (80 mg). 3 was pure and was eluted at the same place as glutamic acid on an automatic amino acid analyser. From elementary analysis and MS, the molecular formulae were estimated as: 1, $C_9H_{16}N_2O_5$; 2, $C_9H_{14}N_2O_5$; 3, $C_{11}H_{20}N_2O_5$. The unsaturation of 2 was confirmed by its instability to treatment with acidic

permanganate and bromine. The IR spectra showed absorption bands characteristic of dicarboxylic amino acids or γ -glutamylpeptides.

1-3 were completely hydrolysed by heating with 2 M HCl for 3 hr at 100°; this lability to dilute acid was typical of γ -glutamylaminoacids. 1 gave glutamic acid and β -aminoisobutyric acid (β AIB). This was confirmed by comparison of the IR, MS, 1H and ^{13}C NMR spectra and optical rotation of these compounds with those of authentic materials isolated from *Lunaria annua* [2]. 1 is therefore γ -L-glutamyl- β -aminoisobutyric acid.

Hydrogenation of 2 gave a compound which on 2D-PC and HVE behaved as 1. Mild hydrolysis of hydrogenated 2 gave L-glutamic acid. The MS of 2 showed a pseudomolecular peak at m/z 231 [$M + 1$] $^+$ and other major peaks at m/z 147 [glu] $^+$, 130 [glu-OH] $^+$ and 102 [C terminal amino acid + 1] $^+$. The MS of the trimethylsilylpeptide showed $M^+ = m/z$ 374. The 1H NMR spectrum in D_2O containing 2,2,3,3-tetradeutero-3-trimethylsilylpropionate as an internal standard showed a triplet at δ 3.78 (1H, H-2), multiplets at δ 2.15 (2H, H₂-3) and 2.47 (2H, H₂-4) and a singlet at δ 4.02 (2H, H₂-6). The two isolated olefinic protons, H₂-8, showed two singlets at δ 5.27 and 6.25. 2 was therefore deduced to be γ -glutamyl- α -methylene- β -aminopropionic acid.

The IR of 3 supported the presence of an ester group (1740 cm^{-1}). On treatment with 2 M HCl it gave L-glutamic acid, β AIB (2DPC, HVE and amino acid analyser) and ethanol (detected by GLC). The mass spectrum of 3 showed a weak [$M + 1$] $^+$ ion at m/z 261 and ions at m/z 243, 132 and 86 interpreted as [$M - OH$] $^+$, [$\text{ethyl } \beta\text{AIB} + 1$] $^+$ and [terminal amino acid-OEt] $^+$. The 1H NMR spectrum showed a triplet at δ 3.74 (1H, H-2) and multiplets at δ 2.10 (2H, H₂-3), 2.38 (2H, H₂-4) attributed to glutamic acid as well as multiplets at δ 3.34 (2H, H₂-6) and δ 2.72 (1H, H-7), and a doublet at δ 1.06 (3H, Me-8). The ethyl group of the ester function was observed as the quadruplet-triplet sequence δ 4.11 (2H,

H₂-9) and δ 1.22 (3H, Me-10). All these assignments were confirmed by double irradiations. The ¹³C NMR spectra of **1** and **3** in NaOD 5% and D₂O were in agreement with the proposed structures. The γ-glutamyl structure of **1** and **3** was confirmed by ion-exchange chromatography and NMR at different pHs [4]. The similar [α]_D²⁰ (H₂O) values obtained for **1** and **3** showed that they had the same configuration. **3** is therefore γ-L-glutamyl-ethyl-β-aminoisobutyrate. β-aminoisobutyric acid and β-alanine were also present in the extract (from amino acid analyser).

The isolation of two γ-glutamylpeptides with the second amino acid in the acidic or ester forms is unusual. **3** does not seem an artefact since it is obtained with different extraction procedures, e.g. aqueous *n*-butanol, ethanol and methanol. The three peptides are present at variable concentrations in different *Rhynchosia* species. A chemio-taxonomic study is now in progress.

EXPERIMENTAL

Material. Seeds of *Rhynchosia albiflora* were collected in Kumania (Katanga, Zaire) and identified by F. Malaisse. A voucher specimen is deposited in the Department of Chimie organique et biologique.

General. IR: KBr; ¹H NMR: 300 MHz; ¹³C NMR: 22.63 MHz with dioxane as int. standard (5% v/v), δTMS = δdioxane + 67.4 ppm. MS: 70 eV with DCI mode (NH₃). Amino acids were determined by means of an amino acid analyser equipped with the resin buffer systems described previously [5].

Chromatography and electrophoresis. 2D-PC were carried out using *n*-BuOH-HFo-H₂O (15:3:2, solvent 1) and PhOH saturated with buffer pH 4.2 [5], solvent 2. RA1 values in solvent 1 were: 1.03 (**1**), 0.58 (**2**), 1.67 (**3**); in solvent 2: 1.22 (**1**), 1.20 (**2**),

1.74 (**3**). High voltage electrophoresis was carried out at pH 3.6, 70 V/cm, 90 min. — 0.1 cm (**1**), — 0.5 cm (**2**), + 1.5 cm (**3**), — 0.5 cm for glut. acid.

Determination of peptides. γ-L-Glutamyl-β-aminoisobutyric acid: [α]_D⁰ = 18.6° (H₂O; c 0.75); lit: [α]_D²² = 18.5 (H₂O; c 1.00) [2]. β-Aminoisobutyric acid from peptide: [α]_D²⁰ = 14.9° (H₂O; c 1.30); lit: [α]_D⁷ = 14.2 (H₂O; c 0.42) [6]. The amino acid configuration was therefore R. γ-Glutamyl-α-methylene-β-aminopropionic acid: Found C, 47.12; H, 6.07; N, 12.10. C₉H₁₄N₂O₅ requires C, 46.95; H, 6.13; N, 12.17%. γ-Glutamyl-ethyl-β-aminoisobutyrate: Found C, 50.68; H, 7.71; N, 10.80 C₁₁H₂₀N₂O₅ requires C, 50.75; H, 7.75; N, 10.76%. [α]_D²² = 14.0° (H₂O; c 0.6). ¹³C NMR: δ 178.1, 175.4 and 174.8 (s, C-1, C-5, C-9), 56.6 (d, C-2), 32.6 (t, C-3), 35.0 (t, C-4), 46.3 (t, C-6), 40.9 (d, C-7), 17.8 (q, C-8), 62.7 (t, C-9), 14.7 (q, C-10).

Acknowledgements—We are grateful to Professor Malaisse who collected and identified the seeds. We wish to thank Professor P. O. Larsen, Faculty of Agriculture, Copenhagen for the gift of an IR spectrum of γ-glutamyl-β-aminoisobutyric and Mr E. Groignet for technical assistance.

REFERENCES

1. Morris, Cl. J., Thompson, J. F., Assen, S. and Irreverre, F. (1961) *J. Biol. Chem.* **236**, 1181.
2. Larsen, P. O. (1962) *Acta Chem. Scand.* **16**, 1511.
3. Larsen, P. O. (1965) *Acta Chem. Scand.* **19**, 1078.
4. Kasai, T. and Sakamura, S. (1973) *Agric. Biol. Chem.* **37**, 685.
5. Dardenne, G. (1976) *Mém. FAGem. Gembloux*, 5800, Belgium
6. Balenović, K. and Bregant, N. (1959) *Tetrahedron* **5**, 44.